VelociTI: An Architecture-level Performance
Modeling Framework for Trapped Ion Quantum
Computers

Alexander Hankin*
Harvard University
Cambridge, MA, USA
alexander.hankin @intel.com

David Brooks
Harvard University
Cambridge, MA, USA

Abstract—Trapped-ion (TI) qubit architectures have recently
become a promising candidate for designing and building
quantum computers. In the current noisy-intermediate scale
quantum (NISQ) era, TI qubits stand out for their connectivity
and reliability over other candidates such as superconducting
qubits. However, physical constraints stemming from fine-grained
frequency control of TI qubits introduce limitations to the
maximum number of trapped-ions in a quantum computing
system. This fundamentally challenges the design of large TI-
based quantum computers, with various quantum applications
requiring a large number of qubits for practical realization.

Recent work has proposed TI Quantum Charge Coupled
Devices (QCCD) which provides mechanisms to link multiple
ion-chains together to address the issue of scalability. While such
advances help increase the total qubit count in a TI system, the
weak links between ion chains introduce a performance bottleneck
and gate-latency penalty. Prior TI modeling toolflows have not
explored the performance and scalability implications introduced
by weak links on the design of future TI systems; in this work,
we directly elevate the weak link as an architectural knob, and
present an architecture-level performance modeling framework
called VelociTI. We use VelociTI to study the performance and
scalability trade-offs in a trapped-ion quantum computing design
and find that optimal scheduling of qubits can provide a 6.2x
speedup in performance. Additionally, our analysis shows that
scaling TI quantum computers horizontally (i.e., minimizing the
use of weak links and maximizing the chain length) results in a
20% average speedup compared to using more chains for qubit
placement.

Index Terms—quantum computing, ion trap, trapped ion, weak
link, ion chain, analytical model, performance model, timing,
scaling

I. INTRODUCTION

Quantum computer (QC) designs have advanced rapidly
over the last decade. Google [5], IBM [13], and IonQ [22]
have all recently launched 100+ qubit processors, up from
single digits at the turn of the century. Multiple quantum
computing simulators have also been introduced by various

“Now at Intel Labs.

Abdulrahman Mahmoud
Harvard University/MBZUAI
Cambridge, MA, USA

Mark Hempstead
Tufts University
Medford, MA, USA

Gu-Yeon Wei
Harvard University
Cambridge, MA, USA

cloud vendors, including IBM (Qiskit [2]), Microsoft (Azure
Quantum [6]), and Amazon (Braket [3]), allowing researchers
to begin exploring and studying quantum applications and
future hardware designs.

Despite their name, quantum computers are more akin to
quantum processing units (QPUs), and are better construed
as extremely fast and efficient accelerators for solving certain
problems that classical computers may struggle with [4], [10],
[15], [51]. For example, Grover’s algorithm is a quantum
search algorithm that requires only O(sqrt(N)) computations
as compared to classical search which requires O(N), where N
is the size of the function’s domain [28]. Accelerated search
has the potential to speed up many critical applications such
as drug development [68] or simulated annealing [17], as well
as advance many other computational problems.

In the modern age of heterogeneous system designs, such a
computing model would require that classical computers set up
the inputs for a QPU, then the use of quantum acceleration for
the task at hand, followed by classical postprocessing. While
various costs may be associated with the setup, execution,
and collection of results in this workflow, the computational
acceleration provided by a QPU is expected be sufficiently
large, such that associated overheads are comparatively justified.
Thus, under this premise, most recent work has focused more
on functionality by addressing quantum decoherence (i.e., error)
and scaling up quantum computers (in order to eventually solve
useful problems), with less attention being attributed to actual
QPU performance.

While scale and accuracy are fundamental tenants for prac-
tical QPU realization in the noisy intermediate-scale quantum
(NISQ) era, the tenant of performance is an important metric
for evaluating and comparing different hardware solutions for a
QPU. In particular, there are a couple of competing technologies
for qubit implementations, each with their strengths and
weaknesses (with more description provided in §II and §VII).
Designing a QPU around a specific technology will have major

implications across the entire accelerator ecosystem, as qubit
mapping, gate scheduling, and decoherence mechanisms are
closely associated with the underlying qubit implementation.
Additionally, the mechanisms (both physical and abstraction
layers) for scaling up a QPU to support thousands of qubits
for meaningful computations is closely related to the qubit
technology.

The two leading candidates for qubit implementation are 1)
superconducting qubits, as employed by IBM [13], Google [5],
and Intel [30], which take a semiconductor-based approach
around the Josephson Junction to achieve quantum mechan-
ical properties for computing; and 2) trapped-ion qubits, as
employed by IonQ [22] and Honeywell [52], which are built
around trapping and control of atomic ions for their quantum
behaviors. In the modern NISQ era where noise is a major
contributing factor towards designing QC, the trapped-ion (TI)
qubits have an advantage over superconducting qubits in their
longer coherence times [65], as well as other benefits over
superconducting qubits. On the flip side, a major drawback
for TI qubits is that scaling to a large number of qubits is a
fundamental and physical challenge. Quantum Charge Coupled
Device (QCCD) based TI devices address this drawback to
a limited degree, but there is still significant research effort
needed to architect them and scale them to 50-100 qubits and
beyond [48]. In this work, we focus on TI technology for qubit
implementation, and take an architecture-directed approach for
evaluating the performance and scaling potential of QPUs.

A high-level overview showing the architecture of a simple
TI QC is shown in Figure 1. The building block of the TI
QC is referred to as a chain. This chain contains the trapped
ions which act as the qubits which are used for computation.
Multiple published systems can address up to 32 ions through
the use of a 32-channel acousto-optic modulator (AOM) [14],
[18], [36]. To scale the number of qubits, chains are linked
together to form multiple ion chains. TI QCs possess the
advantage of providing all-to-all connectivity between qubits
within a chain, as well as the condition that the quality of all
qubit pairs in a chain are equal. The drawback is connection
latency between multiple chains: communication across chains
has a longer latency than operations within a chain, due to
the optics required over free-space paths which introduces
significant drift and noise into the system [43], [49], [57]. We
call such connections between chains a weak links.

Weak links present an architecture-level knob for scaling TI-
based QPUs. While weak links provide physical mechanisms
to scale qubits beyond their chain limitations, exploring the
trade-off between “horizontal” and “vertical” scaling has not
been performed before (§VI-B). Additionally, understanding
the impact of weak links on performance can help usher and
navigate early design space explorations for QPU hardware,
elevating hardware-specific details for architectural evaluation.
To the best of our knowledge, we are the first work to
provide architecture-level abstractions and performance models
to evaluate the weak link as TI QCs scale from the NISQ-
era systems (50-100 qubits) to beyond. We propose VelociTI:
an architecture-level performance modeling framework for

Trapped-Ion quantum computers. We make the following novel
contributions:

€ An architecture-level performance modeling framework with
TI abstractions for quantum and classical architects to
evaluate, optimize, and scale NISQ-era QCCD-based TI
system designs ($III, §IV, §V);

@ Evaluation of optimal TI configuration for a range of
quantum applications on QCCD-based TI systems (§VI-A);

@ Novel analysis on the effect of the weak link and ion chain
length on the performance and scalability of TI QCs from
50-100 qubits and beyond (§VI-B);

€ Open-sourcing the codebase for large-scale experimentation.

II. BACKGROUND

While quantum computing differs substantially from classical
computing paradigms, we focus on the architectural perspective
for designing a different type of accelerator. We first describe
this paradigm shift, highlighting important distinctions from
classical computing for designing a quantum accelerator
(§II-A), followed by a deep dive into the trapped-ion qubit
technology we consider (§11-B).

A. Paradigm Shift: Classical to Quantum Acceleration

Quantum computers (QCs) are still at a nascent stage in
development, from the underlying physical implementation of
qubits to the high-level programming and compilation of quan-
tum programs. However, most computer architects agree that
QC will not necessarily replace classical processors, but rather
work alongside them to accelerate certain applications [19].
In fact, many quantum applications require either classical
preprocessing or postprocessing, enforcing the need for co-
development with traditional classical machines. To that end,
it is more accurate to represent QCs as quantum processing
units (QPUs), and design and evaluate them as a unique type
of accelerator.

A QPU differs from classical accelerators in a couple of
fundamental ways. First, quantum processors operate on qubits
rather than classical digital bits. Qubits exhibit unique physical
properties such as superposition and entanglement (which do
not appear in classical bits), and also physically decohere over
time. Decoherence is a particular challenge for the realization
of fault tolerant (FT) quantum systems; today, most research
operates in the noisy, intermedate-scale quantum era, or NISQ.
Thus, quantum computing and reliability research go hand-in-
hand in the design of quantum computing accelerators.

Second, a quantum computing architecture differs from its
classical counterpart in that it does not obey a Von Neumann
separation between compute and memory. Qubits represent
both the compute fabric and the information flow in a QPU,
and quantum measurements inherently break the computing
system (commonly exemplified by Schrodinger’s cats’ thought
experiment). Thus, many classical and convenient architectural
abstractions and structures (e.g., caches, pipelining, etc) do not
naturally extend to the quantum domain.

Third, while classical computers have built whole ecosystems
around CMOS (and related) technologies, there are multiple

32 ions
[[|

XYxXxxx. 2|

(a) Ion chain

[T T
EXxYx.

32 ions
R

T T T 1
2200222290

|« Weaklink

|
3
Weak link ——» |
]

20002000000 3

(b) Multiple ion chains

Fig. 1: High level overview of TI architecture. Ions are
organized in chains which can be linked together via weak
links. The current physical limit for the number of ions in one
chain is 32.

qubit technologies in development and analysis, and none have
yet emerged as a clear “winner”. The leading two candidates are
superconducting qubits and trapped-ion (TI) qubits, while other
potential qubit technologies exist such as the semiconductor
spin qubits [32], linear optics [37], and Majorana qubits [33].

B. Qubit Technologies

There are multiple competing technologies in the qubit space.
As was the challenge in the early days of computing for
harnessing and taming the classical properties of electrons,
the challenge today is to control the quantum properties and
leverage them for computing.

Trapped-ion (TI) qubits are one of the leading candidates in
this space. TI qubits operate directly on atoms, leveraging the
quantum mechanical properties via internal energy levels of
the atoms. Common ions such as Ca+, Ba+, or Yb+ (amongst
others) are used [19]. This is in contrast to Superconducting
qubits, which are implemented with lithographically printed
circuit elements. Superconducting qubits revolve around an
electrical circuit element called a Josephson junction to create
“artificial” atoms which exhibit desired quantum mechanical
properties. Historically the leading (and only practical) qubit
technology for many years, superconducting qubits can scale
to large numbers if noise can be sufficiently reduced (hence
operating close to O Kelvin). Modern challenges in the
superconducting work is exploring how to address errors
resulting from physical noise and qubit state decoherence,
with quantum error correcting codes [20], randomized circuit
designs [63], and frequent recalibration [38] a requirement for
producing useful operational qubits.

A TI qubit is implemented by stabilizing an ion in physical
space by “trapping” it in place to control it. This is done
by applying an RF Paul trap to freeze the ion at a saddle-
point, followed by physical cooling to reduce vibrations and
decoherence. Microwave pulses (hyperfine qubits) or lasers
(optical qubits) are used to control qubits and excite ions and
transition from one state to another for computation, depending
on the frequency of operation for the trapped ions.

Trapped ions have relatively long coherence times [65],
which means that the qubits are long-lived to address reliability
concerns. However, scalability is a challenge. TI qubits can be
put into chains, as depicted in Figure 1, allowing nearby qubits
to interact with one another (via gate operations, entanglement,
etc) and a physical system is architected at the chain-granularity
(for cooling, frequency manipulations, etc). However as chains
become long, it becomes challenging to properly control
individual qubits, and the fine-grained frequencies of the qubits
must be extremely well controlled. So far, multiple published
systems can address up to 32 ions through the use of a 32-
channel acousto-optic modulator (AOM) [14], [18], [36].

Instead of attempting to scale ion chains horizontally by
making chains longer and adding control for more qubits within
a chain, Quantum Charge Coupled Device (QCCD) based TI
devices have been proposed which allows us scale vertically
by linking multiple chains together (Figure 1) [11], [34], [35],
[39], [44], [46], [47], [52], [55], [56], [64], [66]. To connect
two chains, a weak link is introduced between a qubit in the
first chain and a qubit in the second chain. The physical novelty
of linking chains vertically could potentially enable trapped-
ions to scale up to more qubits; however, multiple chains
introduces new constraints which need to be considered from
a performance perspective.

In particular, quantum gates can only operate on qubits that
belong to the same chain or the weak links connecting two
chains together. This introduces a physical limitation on the
types of qubit operations a higher level algorithm or compiler
can schedule, since not all qubits can directly interact with
one another. Furthermore, qubit operations on weak links
introduce a heavy latency penalty due to the physical link
used to communicate between two chains (as compared to
local gate operations between two qubits on the same chain).

These physical attributes of trapped-ion architectures are
commonly dismissed if focusing on a gate-level abstraction
of the underlying qubit technology [61], [62]. Additionally,
while most studies at the architectural level focus on the
challenges of reliability [50], [59], functional correctness [8],
[58], or scalability [16], [60], only one work has modeled the
performance impact of QC as a function of the underlying
trapped-ion technology [48]. Understanding the performance
implications is a crucial piece of the puzzle while navigating
the early stages of QPU design in the NISQ era of 50-100
qubits and beyond.

III. VELOCITI FRAMEWORK OVERVIEW

While the differences between classical and quantum accel-
erators may seem stark, this also creates a unique opportunity
for computer architects to bridge the gap between the hardware
and the software in the quantum space, and explore the
integration of a QPU within a classical computing system. In
this work, we focus on the trapped-ion (TI) qubit technology
as a promising hardware fabric for QPUs, and introduce a
performance modeling framework, VelociTI, to address the
challenge of scalability for TI architectures.

VelociTl —:i_’)

| TeTe[T
[]

(

NS

T T A
Resource Randomized HW-aware Parallel Execution
\ Availability Qubit Placement Gate Placement j
circuit.js HW config Optimization Exploration
\ \ \ (area-focused)

Fig. 2: High-level overview of VelociTI. VelociTI performs “place-and-route” for qubits and gates across ion-chains for a
given optimization target (e.g., minimal area utilization) and measures the circuit timing using optimized performance models.

A. Performance Modeling Goals B. VelociTl Design and Workflow

Figure 2 depicts a high level overview of VelociTI. VelociTIl
is broadly composed of three stages:

The realm of quantum computing offers a huge design space
for hardware and software exploration. Understanding and
exposing the correct abstractions from the physical qubit level
will greatly benefit architects and compiler designers to bridge
the gap for algorithm and software developers. At the same time,
architects can help understand the needs of software, using the
knowledge to explore and direct the qubit technology for the
NISQ era. One of the primary goals of VelociTI is to bridge
the gap between low-level hardware implementations (i.e., of
the trapped-ion chain) and higher system level challenges such
as scalability and performance. While many prior works in
the domain have abstracted down to the gate level only (since
superconducting qubits have been the only practical technology
for QCs for many years), our framework helps expose architects
to the unique advantages of trapped-ion technology.

Such an exploration requires modeling and simulation work-
flows to gauge the benefits and drawbacks of the technology,
particularly as physicists tackle the challenging aspect of
controlling quantum properties for computation. Prior work
has focused on functional correctness of computation on TI
quantum computers [42], [54], addressing the issues of error
accumulation and information management. However, the issue
of scale has been a challenge, both with horizontal scaling
techniques via longer ion-chain studies [48] and vertical scaling
via weak links. To the best of our knowledge, no publicly
available architecture-level modeling framework currently
employs a TI chain weak link abstraction for conducting
performance and scalability experimentation of TI systems
beyond the NISQ-era scale (50-100 qubits). This elevates
the need for simulation and modeling tools, like VelociTI,
to understand the impact, benefits, and drawbacks of scaling
QCCD-based TI QC systems which connect ion-chains via
weak links.

1) Boundary conditions: The input into the system is a set
of boundary conditions required for simulation. This is
composed of two parts: a general circuit description, which
specifies components that represent a quantum application,
such as the number of qubits, the number of 1-qubit gate
operations, and the number of 2-qubit gate operations. The
second part is a set of timing configurations for the system,
including 1-qubit operation latency, 2-qubit operation
latency, and the weak-link penalty for communication
across chains. Table I lists configuration parameters for
VelociTL

2) Place-and-route: Using the boundary conditions as input,
the second phase generates potential circuit layouts, in the
context of trapped-ion chains and weak-link availability.
While the space of possible layouts is extremely large, we
focus on an optimization target to help generate circuits.
In this work, our target is to minimize area, although
other potential optimizations can be used. Minimizing
area implies understanding whether to place qubits on
previously populated chains, or to introduce a new chain.
Additionally, gate operations have constraints that need
to be managed as well in this step, as 2-qubit gates can
not necessarily operate on any two qubits in the system
(only within a chain or at the weak links).

3) Performance Modeling: The third phase uses the gen-
erated circuit layouts to predict total execution time. As
quantum computers offer a large degree of computational
parallelism, our models take into account circuit design to
find the shortest execution time possible, and compare to a
baseline implementation where no parallelism is enforced
(which may occur if a system is naively scheduled).

Finding an optimal placement of qubits and gates within a
set of trapped-ion chains is a prohibitively expensive operation.

parameter meaning
q number of 1-qubit gates
P number of 2-qubit gates
0 latency for I-qubit gate
configured ¥ latenc§ for 2-gubit iate inside chain
ay latency for 2-qubit gate between chains
opt chain optimization target
c number of chains
computed Wmaz maximum number of weak links
w number of weak links used

TABLE I: Model parameters for the TI circuit abstraction
used in VelociTI. The weak link between chains is accounted
for by penalty factor, a.

Instead, VelociTI uses a pseudo-random placement policy for
generating a single circuit layout, followed by averaging across
multiple circuit designs during the performance modeling.

We first compute a minimal number of ion-chains, as a
function of the ion-chain length and the qubits present in
the system (provided from the boundary conditions). With
the number of ion-chains fixed, we randomly place qubits
and distribute them across the chains. Subsequently, we place
1-qubit and 2-qubit gates to operate on the qubits, with
the condition that 2-qubit operations are restricted to intra-
chain operations or weak-link operations - in other words,
communication between two chains via a gate must occur via
the weak link connection, and only the qubits on the edge of
a weak link can be used for such communications.

C. Limitations

We emphasize that VelociTI is a performance and timing
tool, and is not a tool for functional simulation of quantum
algorithms. Unlike classical circuit design where gates are
placed in a deterministic manner on input signals to generate
outputs for functional correctness, our tool explores the
mapping of qubits and gates on the ion-chain architecture
to determine the expected runtime for an algorithm. This
distinction and limitation is important, as VelociTI can be
used to understand the expected runtime on a TI architecture
and how an algorithm can potentially scale (as a function of
the number of gates it requires and the underlying parallelism
of the TI design), but our tool is not meant to be used to
obtain the quantum computational result of a running algorithm.
Additionally, we abstract the particular fype of gate (e.g., a
CNOT or Hadamard gate) based on the number of inputs it
requires (e.g., 1-qubit gates or 2-qubit gates), and model the
latency of the gate operation. Again, this benefits timing and
performance, setting aside algorithmic correctness. Accurately
modeling functional correctness at large number of qubits
is an intractable problem, as that would imply a classical
simulator outperforming a quantum processor. These all factor
into our design decision to focus on the previously unexplored
architecture-level performance modeling of NISQ-era and
future TI systems, provided the absence of real multi-chain
TI systems for experimentation, but we envision incorporating
functional simulation for small systems as a future direction.

IV. TRAPPED-ION CHAIN PERFORMANCE MODELING

In this section, we outline our performance models for
a multi-chain TI quantum computer architecture. We first
implement a serial performance model as a baseline study,
followed by a parallel model for capturing the parallel nature
of a TI quantum computer.

A. Model parameters

The model parameters are the parameters which VelociTI
uses to represent a quantum TI system. A summary of the
model parameters is displayed in Table I. This includes the
total number of qubits and the total number of gates. The other
configured model parameters include the latency required for
different kinds of gates. All 1-qubit gates have the same latency
and all 2-qubits have the same latency except for if there is a
weak link involved [7], [53], [57]. « is the penalty term for a
2-qubit gate latency that involves a weak link. opt represents
the optimization target (e.g. area) for determining the number
of ion chains to be used. The computed parameters include the
number of chains, the number of available weak links, and the
number of weak links that were used during gate placement.

B. Serial baseline performance

For any trapped-ion quantum circuit specified using the
model parameters listed above, we can then derive an ex-
pression for baseline serial timing, ts.,iq;. This relationship
is described in Equation 1. ¢ is a function of both the total
latency for 1-qubit and 2-qubit gates. In the case of a 2-qubit
gate, there is a possibility of a weak link being present. This
is captured by I'. The expression for I' is shown in Equation 2.
T" is equivalent to the total latency of all the 2-qubit gates in

the circuit. tserial = q0 + T D
2

Serial operation modeling does not take advantage of intra-
chain parallelism, indicating a worst-case runtime performance.

While physically not a realistic option in a TI architecture, we
consider this as a normalization baseline for measuring different
possible parallel speed-ups, as described in the following
section.

I'=way+ (p—w)y

C. Intra-chain parallelism using a directed graph

With the TI architecture, it is possible for chains to operate
in parallel if a weak link is not involved. This intra-chain
parallelism allows for higher performance and opens the door
to more optimization opportunities. Conceptually, two chains
can operate in parallel so long as scheduled gate operations do
not cross the weak-link boundary, at which point serialization
operations are required for ordering. To allow us to take
advantage of compute parallelism, we use a directed graph for
gates to compute longest paths. This ultimately will be used
in calculating performance for a circuit.

Nodes are used to represent gate operations, introducing
an explicit ordering which can be used to extract parallelism.
Specifically, the directed edges between nodes indicates the
order of operations. Thus, there will be multiple paths in a graph

to represent the different communication paths between qubits
in a circuit. Edge weights are used to represent the latency of a
node/gate. Given that an edge connects two nodes/gates, we set
an edge weight to correspond to an incoming gate’s latency. To
make sure that all gate latencies are accounted for, in the case of
an edge involving a “start node”, the corresponding edge weight
will be the sum of both the incoming and outgoing nodes. A
“start node” simply refers to a node which is connected to an
input qubit.

Figure 3 illustrates our graph representation of a quantum
circuit used for performance modeling. Figure 3(a) shows a
7-qubit circuit where qubits ql—g4 are on one ion-chain (black
qubits), and q5—q7 are on a separate ion-chain (red qubits).
This circuit contains six 2-qubit gates.

The corresponding parallel performance model graph is
shown in Figure 3(b)-(e). In this example, there are three
“start nodes”: (1) the 2-qubit gate operating on ql and q2, (2)
the 2-qubit gate operating between q3 and g4, and (3) the
2-qubit gate operating on q6 and q7. This is illustrated with
2 circles on the node in the graph representation. Notice that
start-nodes have no incoming edges, and only contain outgoing
edges. As a basic optimization, we save all start-nodes as a list
in VelociTI, allowing us to maintain a record of start nodes
when calculating the longest path in the circuit.

Each node is labeled with the qubits being operated on for
each gate. If there are multiple gates operating on the same
qubits, we use a unique identifier for each instance of the
gate, incrementing from 1. This is analogous to a static-single
assignment (SSA) format when labeling registers, in order to
uniquely identify each gate in the circuit.

Edge weights are subsequently added to the graph, represent-
ing gate latencies in the system. For example, between nodes
q3q4 and g4qS, we have an edge weight latency of (1+a)y
because the destination node/gate, q4q3, is a 2-qubit gate and
there is a weak link involved (ay) plus the latency of q3q4 ()
because it is a start node. So the total latency is ay+y=(1+a)7.

On the other hand, between q4q5 and q5q6 we have an edge
weight of ~ because q5q6 is a 2-qubit gate (no weak link) and
the source node, q4q5, is not a start node.

D. Calculating performance

Once the graph representation is constructed, we can calcu-
late the performance of the circuit. Using the representation
that we have built, we can take advantage of existing graph
algorithms for computing longest path in order to compute the
overall parallel performance of a circuit. An overview of this
process in shown in Figure 3(b)-(e).

Each subfigure indicates a computational chain of operations
which could be performed in parallel on the TI architecture.
The parallel performance model calculates the total latency of
each parallel path by summing the edge weights between all
nodes in each path, and then returns the highest latency of all
the parallel paths. This is the total latency of the circuit. In
the example illustrated, the parallel latency of the circuit is
dictated by path (e), for a latency of (1+a)vy+7.

V. VELOCITI SOFTWARE IMPLEMENTATION
A. Implementation Details

VelociTI is implemented using Python v3.8 and designed
with three main high-level priorities: flexibility, usability, and
extensibility. Due to the rapid growth of quantum computing
research, these design critera are required for rapid iteration
and additional abstractions to be added to the framework. We
use the NetworkX [1] graph library for the directed graph
representation, along with a rich user input interface to expose
all model parameters as input arguments to allow for easy
design space exploration and scalability experiments through
batch scripts. We add functionality to configure, save, and load
existing circuits to the software via json configuration files.
Finally, a test bench equipped with canonical unit tests is used
to maintain tool correctness as the framework scales.

2y (1+0)Y

Y 2 S (J oY
%y (1+0)Y

it

: O@b@@m

Fig. 3: Directed graph representation of a TI architecture. (a) Shows an example 2-chain (black, red), 7-qubit, 6 2-qubit
gate quantum circuit. The corresponding directed graph representation is shown in (b)-(e). Each node has a label representing

a gate operation, and nodes with two circles indicate “start nodes”

. Edge weight refers to the latency of an operation (the

destination node) plus the latency of the source node/operation if the source node is a “start node” (See §IV-C).

perf model.py

(1) Setup .
circuits - -
mw (2) HW |mplemerl1tat|on
model h place-n-
run.pyﬁcircuit .py‘ _— parc route
—
gates
netlist op. list
— |
test_perf model.py 'q2q3’, 'q6']

(4) Test boarallel (3) Performance Model
unit | | unit unit . ° longest
test | | test || test digraph & path

Fig. 4: Overview of the software implementation of VelociTI.

The software flow is divided into 4 main modules: (1) setup,
(2) hardware implementation, (3) performance modeling, and
(4) testing. An overview of the software flow is shown in
Figure 4. First, the setup module either runs in normal mode
or in test mode (with the test module). In normal mode, the
setup module processes user inputs through command line
arguments and sets the appropriate circuit model variables
which will be fed into the performance modeling module. The
setup module then instantiates a circuit using the circuit model
shown in Table 1. This is done through (a) direct specification
of all model parameters, (b) by specifying a circuit from the

library of circuits, or (c) choosing completely random circuits.

The library of circuits contains the applications used in our
evaluation (listed in Table II) as well as canonical test circuits
that are used with the test bench. In test mode, the setup module
also communicates with the test module model to initialize all
unit tests in the testbench.

The hardware implementation module accepts the circuit
model from the setup module and generates a netlist and
operation order. To achieve this, intermediate microarchitecture
blocks and place-and-route blocks determine from the circuit
model: (i) a qubit mapping onto the available chains (i.e.,
netlist) where the number of chains is based on chain length
and optimization target, and (ii) an operation order (i.e., op.
list) that (a) is scheduled based on an optimization target
and (b) respects the physical constraints of the TI hardware
(i.e., weak links). Once the netlist and op. list are generated,
the performance modeling module generates a directed graph
based representation of the HW described by the netlist and
the operation list, as described in §IV. The performance model
finds all intra-chain parallel paths within the directed graph to
ultimately compute the longest path in the entire circuit.

The test module is used when the software is run in test mode.

It runs the testbench which contains unit tests of canonical
circuit configurations which ensures sustained correctness of
generic and corner cases as new abstractions and models are
added to the software.

B. Tool Evaluation

To evaluate the performance and scalability of our software
implementation, we measure the simulation time as quantum

w
o
!

Sim. Time [s]
N
tn

o
o
;

Qubits:2-qubit Gates

Fig. 5: Software runtime versus quantum circuit size.

circuit size scales. This is shown in Fig. 5. We simulate random
circuits and sweep number of qubits and number of 2-qubit
gates up to the limit of NISQ-era TI systems (50-100 qubits).
For each circuit, we do 35 simulation runs and each bar
represents the average simulation time in seconds. We run
the simulations on a desktop machine with a 6-core 3.1 GHz
Intel Core i5 processor with 8 GB DDR4 memory running at
2667 MHz.

Our results show an average simulation time of 0.63 seconds
for a random circuit with 25 qubits and 100 2-qubit gates. For
a random circuit with 100 qubits and 400 2-qubit gates, we
measure a simulation time of 6.23 seconds, a 9.89x increase
in simulation time. If we extrapolate this trend and assume
that simulation time increases by 10x as number of qubits and
number of 2-qubit gates scales by 4x, then we can predict that
with 1,200 qubits and 4,800 2-qubit gates, the simulation time
will be approximately 1 hour and 40 min. This is assuming
that (1) no optimizations are performed to improve the runtime
of the software implementation, and (2) the simulations are
run on a commercial desktop machine; as such, this is a
reasonable simulation time for classical performance simulators,
and additional software engineering optimizations can further
improve the toolchain.

VI. TI PERFORMANCE AND SCALABILITY EVALUATION

To demonstrates the use of VelociTI, we perform two case
studies. First, given an available, pre-built system with specific
parameters defined by the hardware, we determine what is
the best mapping of the quantum application onto the system.
Second, we use the tool as a simulator to explore the design
space of a QPU depending on how the various parameters
may scale over time. For our case studies, we run VelociTI
with 6 quantum computing applications: Supremacy [4], [41],
Quantum Approximate Optimization Algorithm (QAOA) [23],
[24], [29], [45], SquareRoot (Grover’s search algorithm [28]),
Quantum Fourier Transform (QFT) [9], Adder, and Bernstein-
Vazirani (BV) [67]. We choose these applications because they
provide a variety in (a) number of qubits, (b) number of 2-qubit
gates, and (3) ratio of 2-qubit gates to qubits. An overview of
these applications are shown in Table II. These applications
have been used in previously published TI architecture work
[48]. For our gate latency model, we use the latency values
shown in Table III, which are consistent with prior work on
published TI systems [7], [53]. We use a latency of 1 us for a

Application | Qubits | 2-qubit Gates
Supremacy 64 560

QAOA 64 1260
SquareRoot 78 1028

QFT 64 4032

Adder 64 545

BV 64 64

TABLE II: Applications with attributes used in our evaluation.

Gate Latencies
Latency for 1-qubit gate [us] | 1
Latency for 2-qubit gate [us] | 100
Penalty for weak link 20,18,16,14,12, 1.0

TABLE III: Latency of gates in our evaluation [7], [53], [57].
Weak link penalty is described in §IV.

1-qubit gate and a latency of 100 us for a 2-qubit gate. In the
case of a weak link, we apply a penalty factor of 2 [57].

A. Case Study 1: What is the best estimated performance for
a given hardware implementation?

For each application, we run both the serial and parallel
model. For this we use a chain length of 16 qubits, and we
assume an area optimized architecture where the minimum
number of chains are used. Given that the SquareRoot applica-
tion has more qubits than the others, one additional chain is
needed compared to the other applications. For qubit and gate
scheduling, we utilize a purely random approach without the
use of any optimizations. The resulting performance is shown
in Figure 6. We run each application 35 times and each bar
shows the average execution time with a vertical bar indicating
the maximum and minimum execution time reported for each
benchmark. On average, serial execution time is 69.3 ms and
parallel performance is 11.2 ms with parallel model achieving
an average speedup 6.2x over the serial model. As expected,
serial and parallel performance is a function of the number of
2-qubit gates: the application with largest number of 2-qubit
gates, QFT, has the longest latency: 403.6 ms serially and 74.5
ms when run with between-chain parallelism enabled.

We also observe that the benefit of using the serial model
versus parallel model is benchmark dependent. For Supremacy,
QAOA, SquareRoot, QFT, and Adder, parallel speedup is
around 6x whereas BV achieves a parallel speedup of 9.9x.
This is in part due to the lowest ratio of 2-qubit gates to qubits
(1:1) in BV. As the ratio of 2-qubit gates to number of qubits
increases, the number of parallel compute paths decreases and
the length of the remaining paths increase at an even faster
rate as qubits become more connected. This is interesting as
there may be applications in the future with an even higher
ratio of 2-qubit gates to qubits than the applications used in
this case study, in which case—when taking into account the
increased overhead of parallel scheduling—it may be more
worth it to schedule and execute serially.

B. Case Study 2: Design Exploration and Scalability

We now relax the architecture design to sweep the chain
length within a presently achievable range (8, 16, 24, and 32
ions per chain). In the case of Supremacy, QAOA, QFT, Adder,

1264 1033 4036
80 f 5.4 B Serial
E 3 Parallel
= 60
E
=
c 40
S
2
3
g 20
w
° A 2
%) o?’ e & & S N
2 o &
¥ &P «°
N “ (4
N 5y S

Fig. 6: Estimated performance for the applications used in
our evaluation running on a given practical TI hardware
implementation. Chain length of 16 ions is used, which is
typical of NISQ-era QCCD-based TI systems [48].

w
o

Chain length
25 = s
20 3 16
I 24

N 32

Execution Time [ms]
=
wm

10

5

0 A A\
3 \g J & Q>
N) &L & & S >

@ (e &
&S & R
NS N &
X >

Fig. 7: Estimated performance as a function of chain length.
for the applications used in our evaluation (see Table II and
§VI-B). Chain length is swept within the achievable realm (8
ions to 32 ions).

and BV, this creates 8, 4, 3, and 2 weak links, respectively. For
SquareRoot which has a larger number of qubits, the number of
weak links is 10, 5, 4, and 3, respectively. We look at how the
change in chain length affects the performance of the quantum
applications. For this analysis, we disregard the serial model
as it is consistently worse.

Figure 7 shows parallel execution time for the applications
with varying TI chain length. We observe that sweeping chain
length from 8 to 32 results in an average speedup of 20%.
Again, we notice different behavior for BV with a speedup
of only 11% between chain length of 8 qubits to 32 qubits.
Our results show that increasing chain length horizontally
suggests a continued improvement in performance for parallel
execution. This encourages continued development of longer
chains physically.

To further study the effect of chain size in parallel perfor-
mance of TI architectures, we conduct a scalability experiment.
In this case, we turn to a different measure of quantum computer
evaluation: quantum volume. Quantum volume refers to square
quantum circuit with N qubits and N/2 2-qubit gates. In the
previous case study, we observed that the ratio of 2-qubit gates

32
= 40

[l 48
Bl 56

Chain length: B 64

g
o

o
©

Execution Time [ms]
o o
> o

e
N

o
(=]

28 48 68 88
Qubits

(a)

=
N
wu

2
= 1.8

Em 16
B 14

alpha:

=
[=}
o

Execution Time [ms]
o o
[C RN
o w

o
N
(o]

©
o
S

28 48 68 88
Qubits

(b)

Fig. 8: Effect of scaling chain length and weak link penalty on the performance of Quantum Volume (N qubits, N/2
2-qubit gates). (a) Shows the effect of doubling the 32-ion chain length by means of increments of 8 ions. Increasing the
chain length, i.e. scaling horizontally, has trivial impact on execution time (consistent with Bernstein-Vazirani execution time in
Fig. 7) (see §VI-A). (b) Shows the effect of reducing the weak link penalty from 2 down to 1, i.e. no weak link penalty. This
results in a consistent reduction in parallel execution with an average speedup of 24% from a=2 to a = 1.

to number of qubits had a significant affect on the speedup
achieved by parallel execution over serial execution. We next
explore if this ratio may have an effect on parallel execution
time of a TI architecture with chain length and weak link
penalty scaled beyond the presently achievable limits.

We scale ion chain length from 32 qubits to 64 qubits and
reduce the weak link penalty o from 2 down to 1 (implying no
weak link penalty). The objective for this study is to determine
which type of scaling is the best method for maximizing
TI execution time in the future. Figure 8(a) and 8(b) show
execution time as a function of chain length and «, respectively,
as quantum volume scales from 8 qubits to 128 qubits.

We make the following observations from our results. First,
increasing chain length has a trivial impact on execution time
as quantum volume scales. This is in fact consistent with the
behavior of BV, another application with lower ratio of 2-
qubit gates to number of qubits. Second, we observe that
reducing the weak link penalty factor from 2 to 1 has a
consistent effect on parallel execution as quantum volume
scales, and it results in an average speedup of 24%. Third,
execution time varies dramatically across application runs with
the maximum difference between average execution time and
maximum execution time for a single benchmark surpassing
50%. This makes sense given the low ratio of 2-qubit gates
to number of qubits. In fact, quantum volume represents the
lowest possible ratio and provides an interesting case study.
For lower ratios of 2-qubit gates to qubits, the scheduler has
less options and since we are using random scheduling, the
scheduler is more likely to choose a less optimal schedule.
This motivates the need for robust scheduling optimizations
to prevent 50% or more performance degradation. This result
also drives home the application dependence on architecting
and scaling TI quantum computers.

Figure 9 shows a similar analysis but with different circuits.
We keep the range of number of qubits the same, but this time
we use a ratio of N qubits to 2-N 2-qubit gates to capture
the effect of circuit composition on scaling potential of TI
QCs. Figure 9(a) shows the same scaling of chain length, but

this time we see a non-trivial impact of horizontal scaling,
i.e., chain length scaling on performance. There is a marked
difference in this effect for circuits with either less than or
greater than 48 qubits. For less than 48 qubits, chain length
scaling still has a trivial impact on performance; however, for
48, 68, 88, 108, and 128 qubits, we see an average speedup of
up to 34% (48 qubits, 96 2-qubit gates). Figure 9(b) shows the
effect of scaling the weak link penalty on performance. We
observe an even greater impact of weak link penalty scaling on
execution time than with Quantum Volume with an achieved
speedup of up to 49% (128 qubits, 256 2-qubit gates).

These scalability studies indicate a substantial dependence
of circuit composition in terms of the ratio of qubits to 2-
qubit gates. This has a couple important implications for the
future design of TI systems. First, TI design must be done
with awareness of the characteristics of the application(s) that
will run on the QPU. From Table II, we can see a variety of
qubit to 2-qubit gate ratios. In the case of applications which
have a higher ratio of 2-qubit gates to qubits, an increased
chain length will boost performance while in the case of an
application similar to quantum volume, increasing chain length
may have a trivial impact on performance. On the other hand,
we find that if device and physics researchers are able to
improve the weak link connection (with current optics or other
methods) between TI chains, this will result in a substantial
speedup in performance.

VII. RELATED WORK

As the surge in quantum computer research is relatively new,
the quantum computing research community is still developing
the foundational work on a robust quantum hardware-software
stack. While there has been work at almost all levels of the
computing stack for quantum computing, there has been more
attention in certain areas. For example, at the software, compiler,
and device/physics levels, there has been considerably more
research than at the architecture-level. There has been scarce
work in developing the crucial architecture-level abstracts and
tools which bridge the gap between hardware and software.

3 Chainlength: [32 W 48 [64
7 Em 40 B 56
g2
£
c
°
o1
@

X
w
0
28 48 68 88
Qubits
(a)

=
=)

Execution Time [ms]
p -
w w

o
<)

28 48 68 88
Qubits

(b)

Fig. 9: Effect of scaling chain length and weak link penalty on the performance of a TI system simulating random
circuits with 2:1 ratio of 2-qubit gates to qubits (§VI-B). Plot (a) shows an alternate result to that for quantum volume
where chain length scaling from 32 ions to 64 ions now results in up to a 34% speedup. Plot (b) shows similar trend for
reducing weak link penalty compared to quantum volume — with greater magnitude.

This becomes even more pronounced when venturing outside
of superconducting-based QC research.

A. Quantum architecture

Most of the QC research at the architecture level has focused
on Superconductor-based QCs [25]-[27], [31], [40]. Murali et al
published the first comprehensive research study on architecting
NISQ-era QCCD-based TI systems (50-100 qubits) [48]. In
their work, they identify key observations, including the impact
of design choices like trap capacity and connectivity on fidelity,
and the impact of application on design. This is consistent
with case study 2 in Section VI in this work which shows that
application characteristics affect design choices when scaling TI
systems. Finally, Murali et al show that the optimal entangling
gate implementation and chain reordering method also varies
by application.

B. Abstract architecture-level modeling

For decades, classical architects have been designing mod-
eling tools to analyze and optimize designs of an emerging
system. This complements the work at lower levels of the
computing stack by filtering out designs which are not feasible
at the architecture level. Modeling is a key enabler of future
computing system development, and similar efforts should
be replicated in the quantum computing space. For instance,
Wattch [12] is an early power modeling framework for analysis
and optimization of architecture designs, and NVSim is a
timing, energy, and area modeling framework for emerging
non-volatile memories published by Dong, Xu, Xie, and Jouppi
[21]. Such studies and tools help pathfind in the early stages of
a computer designs, as is extremely important in the quantum
domain today.

VIII. CONCLUSION

Quantum computers are predicted to be “accelerators” in
traditionally classical computing systems, and interest in
Trapped Ion (TI) quantum computers, in particular, has grown
recently due to their all-to-all intra-chain qubit connectivity
and their longer coherence times than superconducting based

quantum computers. In this work, we developed and concretized
fundamental architecture-level abstractions for QCCD-based
TI systems which we used as a foundation for design and
implementing VelociTI, an architecture-level performance
modeling framework for Trapped Ion Quantum Computers.
We evaluate VelociTI by conducting two case studies which
represent a couple of the use cases of a tool like VelociTI.
First, for a given HW implementation and suite of applications,
we find that the place-and-route, i.e. mapping scheme, of the
qubits and gates can have a 6.2X difference in performance.
Second, we focus on design exploration and (i) find the best
choice of chain length within the bounds of what is currently
achievable for our application suite and (ii) determine the effect
of scaling chain length and weak link penalty beyond their
current limits on Quantum Volume. We observed that for (i),
execution time improved by 20% on average from a chain
length of 8 to 32, and for (ii), chain length scaling had little
to no impact while reducing weak link penalty from 2.0 to 1.0
resulted in a performance improvement of 24% on average for
Quantum Volume.

REFERENCES

[1] “Networkx: Network analysis in python,” https://networkx.org.

[2] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucherand, F. J. Cabrera-Herndndez, J. Carballo-Franquis,
A. Chen, C.-F. Chen, J. M. Chow, A. D. Cércoles-Gonzales, A. J. Cross,
A. Cross, J. Cruz-Benito, C. Culver, S. Gonzilez, E. Torre, D. Ding,
E. Dumitrescu, I. Duran, A. Eendebak, M. Everitt, I. F. Sertage, A. Frisch,
A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera, D. Greenberg,
I. Hamamura, V. Havlicek, J. Hellmers, Herok, H. Horii, S. Hu,
T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev,
K. Krsulich, P. Liu, Y. Luh, Y. Maeng, and M. Marques, “Qiskit: An
open-source framework for quantum computing,” 2019.

[3] Amazon Web Services, “Amazon Braket,” 2020. [Online]. Available:
https://aws.amazon.com/braket/

[4] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant, X. Mi,
K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,

https://networkx.org
https://aws.amazon.com/braket/

[5]

[6]

[7

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel,
P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White,
Z.J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, Oct. 2019. [Online]. Available:
https://doi.org/10.1038/s41586-019-1666-5

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell e al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

Azure, “Azure Quantum,” 2022. [Online]. Available: https://azure.
microsoft.com/en-us/services/quantum/

C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas,
“High-fidelity quantum logic gates using trapped-ion hyperfine qubits,”
Phys. Rev. Lett., vol. 117, p. 060504, Aug 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.117.060504

S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental
verification of quantum computation,” Nature physics, vol. 9, no. 11, pp.
727-731, 2013.

E. Bernstein and U. Vazirani, “Quantum complexity theory,” in
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, ser. STOC *93. New York, NY, USA: Association
for Computing Machinery, 1993, p. 11-20. [Online]. Available:
https://doi.org/10.1145/167088.167097

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202,
Sep. 2017. [Online]. Available: https://doi.org/10.1038/nature23474

R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. H. Wesenberg,
M. J. Biercuk, D. Leibfried, and D. J. Wineland, “Near-ground-state
transport of trapped-ion qubits through a multidimensional array,”
Phys. Rev. A, vol. 84, p. 032314, Sep 2011. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.84.032314

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proceedings of
the 27th Annual International Symposium on Computer Architecture,
ser. ISCA "00. New York, NY, USA: Association for Computing
Machinery, 2000, p. 83-94. [Online]. Available: https://doi-org.ezp-
prodl.hul.harvard.edu/10.1145/339647.339657

J. Chow, O. Dial, and J. Gambetta, “Ibm quantum breaks the 100-qubit
processor barrier,” IBM Research Blog, 2021.

S. M. Clark, D. Lobser, M. C. Revelle, C. G. Yale, D. Bossert, A. D.
Burch, M. N. Chow, C. W. Hogle, M. Ivory, J. Pehr, B. Salzbrenner,
D. Stick, W. Sweatt, J. M. Wilson, E. Winrow, and P. Maunz, “Engineering
the quantum scientific computing open user testbed,” IEEE Transactions
on Quantum Engineering, vol. 2, pp. 1-32, 2021.

I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Physics, vol. 15, no. 12, pp. 1273-1278, Dec. 2019.
[Online]. Available: https://doi.org/10.1038/s41567-019-0648-8

D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong,
I. L. Chuang, and J. Kubiatowicz, “Toward a scalable, silicon-based
quantum computing architecture,” IEEE Journal of selected topics in
quantum electronics, vol. 9, no. 6, pp. 1552-1569, 2003.

E. Crosson and A. W. Harrow, “Simulated quantum annealing
can be exponentially faster than classical simulated annealing,” in
2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). 1EEE, oct 2016. [Online]. Available: https:
//doi.org/10.1109%2Ffocs.2016.81

S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright,
and C. Monroe, “Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, vol. 536, no. 7614, pp. 63-66,
Aug. 2016. [Online]. Available: https://doi.org/10.1038/nature18648

Y. Ding and F. Chong, Quantum Computer Systems: Research for Noisy
Intermediate-Scale Quantum Computers, ser. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2020. [Online].
Available: https://books.google.com/books?id=wgrtDwAAQBAJ

D. P. DiVincenzo and P. W. Shor, “Fault-tolerant error correction with
efficient quantum codes,” Physical review letters, vol. 77, no. 15, p. 3260,
1996.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 31, no. 7, p. 994-1007, jul
2012. [Online]. Available: https://doi.org/10.1109/TCAD.2012.2185930

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34

=

S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi,
S. Sachdev, M. Greiner, V. Vuleti¢, and M. D. Lukin, “Quantum
phases of matter on a 256-atom programmable quantum simulator,”
Nature, vol. 595, no. 7866, pp. 227-232, jul 2021. [Online]. Available:
https://doi.org/10.1038%2Fs41586-021-03582-4

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014. [Online]. Available: https://arxiv.org/abs/
1411.4028

E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum
approximate optimization algorithm,” arXiv: Quantum Physics, 2016.
X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren,
N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh,
J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever,
L. DiCarlo, and K. Bertels, “eqasm: An executable quantum instruction
set architecture,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 224-237.

X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi,
1. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen,
R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels,
“An experimental microarchitecture for a superconducting quantum
processor,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 *17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 813-825.
[Online]. Available: https://doi.org/10.1145/3123939.3123952

X. Fu, M. Rol, C. Bultink, H. van Someren, N. Khammassi, I. Ashraf,
R. Vermeulen, J. Sterke, W. Vlothuizen, R. Schouten, C. Almudever,
L. DiCarlo, and K. Bertels, “A microarchitecture for a superconducting
quantum processor,” IEEE Micro, vol. 38, pp. 40-47, 05 2018.

L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 212-219. [Online].
Available: https://doi.org/10.1145/237814.237866

M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute,
K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo, M. Broughton,
B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth,
D. Eppens, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff,
S. Habegger, A. Ho, S. Hong, T. Huang, L. B. Ioffe, S. V. Isakov,
E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim,
P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev,
M. Lindmark, M. Leib, O. Martin, J. M. Martinis, J. R. McClean,
M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz,
J. Mutus, O. Naaman, C. Neill, F. Neukart, M. Y. Niu, T. E. O’Brien,
B. O’Gorman, E. Ostby, A. Petukhov, H. Putterman, C. Quintana,
P. Roushan, N. C. Rubin, D. Sank, A. Skolik, V. Smelyanskiy,
D. Strain, M. Streif, M. Szalay, A. Vainsencher, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, L. Zhou, H. Neven, D. Bacon, E. Lucero,
E. Farhi, and R. Babbush, “Quantum approximate optimization of
non-planar graph problems on a planar superconducting processor,”
Nature Physics, vol. 17, no. 3, pp. 332-336, feb 2021. [Online].
Available: https://doi.org/10.1038%2Fs41567-020-01105-y

Intel, “100-Qubit Quantum Computing System Unveiled,” 2021. [Online].
Available: https://www.tomshardware.com/news/atom-computing-unveils-
100-qubit-quantum-computing-system

A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R.
Brown, M. Martonosi, and F. T. Chong, “Optimized surface
code communication in superconducting quantum computers,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 *17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 692-705. [Online].
Available: https://doi.org/10.1145/3123939.3123949

B. E. Kane, “A silicon-based nuclear spin quantum computer,” nature,
vol. 393, no. 6681, pp. 133-137, 1998.

T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings,
C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus,
and M. H. Freedman, “Scalable designs for quasiparticle-poisoning-
protected topological quantum computation with majorana zero modes,”
Phys. Rev. B, vol. 95, p. 235305, Jun 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.95.235305

V. Kaushal, B. Lekitsch, A. Stahl, J. Hilder, D. Pijn, C. Schmiegelow,
A. Bermudez, M. Miiller, F. Schmidt-Kaler, and U. Poschinger,
“Shuttling-based trapped-ion quantum information processing,” AVS

https://doi.org/10.1038/s41586-019-1666-5
https://azure.microsoft.com/en-us/services/quantum/
https://azure.microsoft.com/en-us/services/quantum/
https://link.aps.org/doi/10.1103/PhysRevLett.117.060504
https://doi.org/10.1145/167088.167097
https://doi.org/10.1038/nature23474
https://link.aps.org/doi/10.1103/PhysRevA.84.032314
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/339647.339657
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/339647.339657
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1109%2Ffocs.2016.81
https://doi.org/10.1109%2Ffocs.2016.81
https://doi.org/10.1038/nature18648
https://books.google.com/books?id=wgrtDwAAQBAJ
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1038%2Fs41586-021-03582-4
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1145/237814.237866
https://doi.org/10.1038%2Fs41567-020-01105-y
https://www.tomshardware.com/news/atom-computing-unveils-100-qubit-quantum-computing-system
https://www.tomshardware.com/news/atom-computing-unveils-100-qubit-quantum-computing-system
https://doi.org/10.1145/3123939.3123949
https://link.aps.org/doi/10.1103/PhysRevB.95.235305

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45

[46]

[47]

[48]

[49]

[50]

[51]

Quantum Science, vol. 2, no. 1, p. 014101, 2020, _eprint:
https://doi.org/10.1116/1.5126186. [Online]. Available: https://doi.org/10.
1116/1.5126186

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-
scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709—
711, Jun. 2002. [Online]. Available: https://doi.org/10.1038/nature00784
J. Kim, T. Chen, J. Whitlow, S. Phiri, B. Bondurant, M. Kuzyk,
S. Crain, K. Brown, and J. Kim, “Hardware design of a
trapped-ion quantum computer for software-tailored architecture for
quantum co-design (staq) project,” in OSA Quantum 2.0 Conference.
Optica Publishing Group, 2020, p. QM6A.2. [Online]. Available:
http://opg.optica.org/abstract.cfm?URI=QUANTUM-2020-QM6A.2

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” nature, vol. 409, no. 6816, pp.
46-52, 2001.

L. Lao, P. Murali, M. Martonosi, and D. Browne, “Designing calibration
and expressivity-efficient instruction sets for quantum computing,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 846-859.

P. H. Leung, K. A. Landsman, C. Figgatt, N. M. Linke,
C. Monroe, and K. R. Brown, “Robust 2-qubit gates in a linear
ion crystal using a frequency-modulated driving force,” Phys.
Rev. Lett., vol. 120, p. 020501, Jan 2018. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.120.020501

G. Li, Y. Ding, and Y. Xie, “Sanq: A simulation framework for
architecting noisy intermediate-scale quantum computing system,” 2019.
[Online]. Available: https://arxiv.org/abs/1904.11590

I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, “Quantum
supremacy is both closer and farther than it appears,” 2018. [Online].
Available: https://arxiv.org/abs/1807.10749

M. Martonosi and M. Roetteler, “Next steps in quantum computing:
Computer science’s role,” arXiv preprint arXiv:1903.10541, 2019.

K. K. Mehta, C. Zhang, M. Malinowski, T.-L. Nguyen, M. Stadler, and
J. P. Home, “Integrated optical multi-ion quantum logic,” Nature, vol.
586, no. 7830, p. 533-537, 2020.

T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L.
Chuang, “A quantum logic array microarchitecture: Scalable quantum
data movement and computation,” in Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
38. USA: IEEE Computer Society, 2005, p. 305-318. [Online].
Available: https://doi.org/10.1109/MICRO.2005.9

N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,
D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn,
A. Kandala, A. Mezzacapo, P. Miiller, W. Riess, G. Salis, J. Smolin,
I. Tavernelli, and K. Temme, “Quantum optimization using variational
algorithms on near-term quantum devices,” Quantum Science and
Technology, vol. 3, no. 3, p. 030503, jun 2018. [Online]. Available:
https://doi.org/10.1088/2058-9565/aab822

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,”
Science, vol. 339, no. 6124, pp. 1164-1169, 2013. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1231298

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz,
L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer
architecture with atomic memory and photonic interconnects,” Phys.
Rev. A, vol. 89, p. 022317, Feb 2014. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.89.022317

P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi,
“Architecting noisy intermediate-scale trapped ion quantum computers,”
in Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ser. ISCA °20. IEEE
Press, 2020, p. 529-542. [Online]. Available: https://doi-org.ezp-
prod1.hul.harvard.edu/10.1109/ISCA45697.2020.00051

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar,
C. D. Bruzewicz, W. Loh, R. T. Maxson, R. Mcconnell, D. Reens, and
et al., “Integrated multi-wavelength control of an ion qubit,” Nature, vol.
586, no. 7830, p. 538-542, 2020.

D. Oliveira, E. Giusto, E. Dri, N. Casciola, B. Baheri, Q. Guan,
B. Montrucchio, and P. Rech, “Qufi: a quantum fault injector to
measure the reliability of qubits and quantum circuits,” in 2022 52nd
Annual IEEFE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2022, pp. 137-149.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

a photonic quantum processor,” Nature Communications, vol. 5, no. 1, p.
4213, Jul. 2014. [Online]. Available: https://doi.org/10.1038/ncomms5213
J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A.
Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes,
K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, “Demonstration
of the trapped-ion quantum CCD computer architecture,” Nature,
vol. 592, no. 7853, pp. 209-213, Apr. 2021. [Online]. Available:
https://doi.org/10.1038/s41586-021-03318-4

I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler,
B. Hofer, C. Wichter, K. Lakhmanskiy, R. Blatt, P. Schindler,
and T. Monz, “Compact ion-trap quantum computing demonstrator,”
PRX Quantum, vol. 2, p. 020343, Jun 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343

J. Preskill, “Reliable quantum computers,” Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering
Sciences, vol. 454, no. 1969, pp. 385-410, 1998.

A. K. Ratcliffe, R. L. Taylor, J. J. Hope, and A. R. Carvalho, “Scaling
trapped ion quantum computers using fast gates and microtraps,”
Physical Review Letters, vol. 120, no. 22, may 2018. [Online]. Available:
https://doi.org/10.1103%2Fphysrevlett.120.220501

S. Sargaran and N. Mohammadzadeh, “Saqip: A scalable architecture
for quantum information processors,” ACM Trans. Archit. Code
Optim., vol. 16, no. 2, apr 2019. [Online]. Available: https:
//doi.org/10.1145/3311879

L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota,
T. G. Ballance, K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J.
Ballance, “High-rate, high-fidelity entanglement of qubits across an
elementary quantum network,” Phys. Rev. Lett., vol. 124, p. 110501, Mar
2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
124.110501

Y. Takeuchi and T. Morimae, “Verification of many-qubit states,” Physical
Review X, vol. 8, no. 2, p. 021060, 2018.

M. A. Thornton, “Introduction to quantum computation reliability,” in
2020 IEEE International Test Conference (ITC), 2020, pp. 1-10.

T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-
C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, “Supermarq:
A scalable quantum benchmark suite,” in 2022 [EEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022,
pp. 587-603.

T. Tomesh, K. Gui, P. Gokhale, Y. Shi, E. T. Chong, M. Martonosi,
and M. Suchara, “Optimized quantum program execution ordering to
mitigate errors in simulations of quantum systems,” in 2021 International
Conference on Rebooting Computing (ICRC), 2021, pp. 1-13.

T. Tomesh and M. Martonosi, “Quantum codesign,” IEEE Micro, vol. 41,
no. 5, pp. 3340, 2021.

J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum
computation via randomized compiling,” Physical Review A, vol. 94,
no. 5, p. 052325, 2016.

Y. Wan, R. Jordens, S. D. Erickson, J. J. Wu, R. Bowler,
T. R. Tan, P-Y. Hou, D. J. Wineland, A. C. Wilson, and
D. Leibfried, “Ion Transport and Reordering in a 2D Trap Array,”
Advanced Quantum Technologies, vol. 3, no. 11, p. 2000028, 2020,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202000028.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.
202000028

P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan,
M. Gu, J. Zhang, and K. Kim, “Single ion qubit with estimated
coherence time exceeding one hour,” Nature Communications, vol. 12,
no. 1, jan 2021. [Online]. Available: https://doi.org/10.1038%2Fs41467-
020-20330-w

K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. C. Doret,
H. Hayden, C.-S. Pai, D. W. Landgren, D. Denison, T. Killian,
R. E. Slusher, and A. W. Harter, “Reliable transport through a
microfabricated$ \ lessi\ greater$ X$\ less$/i$\ greater$-junction surface-
electrode ion trap,” New Journal of Physics, vol. 15, no. 3, p.
033004, Mar. 2013, publisher: IOP Publishing. [Online]. Available:
https://doi.org/10.1088/1367-2630/15/3/033004

K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak, J.-S.
Chen, N. Pisenti, M. Chmielewski, C. Collins, K. Hudek, J. Mizrahi,
J. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams,
A. Ducore, A. Blinov, and J. Kim, “Benchmarking an 11-qubit quantum
computer,” Nature Communications, vol. 10, p. 5464, 11 2019.

https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1038/nature00784
http://opg.optica.org/abstract.cfm?URI=QUANTUM-2020-QM6A.2
https://link.aps.org/doi/10.1103/PhysRevLett.120.020501
https://arxiv.org/abs/1904.11590
https://arxiv.org/abs/1807.10749
https://doi.org/10.1109/MICRO.2005.9
https://doi.org/10.1088/2058-9565/aab822
https://www.science.org/doi/abs/10.1126/science.1231298
https://link.aps.org/doi/10.1103/PhysRevA.89.022317
https://doi-org.ezp-prod1.hul.harvard.edu/10.1109/ISCA45697.2020.00051
https://doi-org.ezp-prod1.hul.harvard.edu/10.1109/ISCA45697.2020.00051
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/s41586-021-03318-4
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://doi.org/10.1103%2Fphysrevlett.120.220501
https://doi.org/10.1145/3311879
https://doi.org/10.1145/3311879
https://link.aps.org/doi/10.1103/PhysRevLett.124.110501
https://link.aps.org/doi/10.1103/PhysRevLett.124.110501
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000028
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000028
https://doi.org/10.1038%2Fs41467-020-20330-w
https://doi.org/10.1038%2Fs41467-020-20330-w
https://doi.org/10.1088/1367-2630/15/3/033004

[68] T. Zhou, D. Huang, and A. Caflisch, “Quantum mechanical methods for 33-45, 2010.
drug design,” Current topics in medicinal chemistry, vol. 10, no. 1, pp.

	Introduction
	Background
	Paradigm Shift: Classical to Quantum Acceleration
	Qubit Technologies

	VelociTI Framework Overview
	Performance Modeling Goals
	VelociTI Design and Workflow
	Limitations

	Trapped-Ion Chain Performance Modeling
	Model parameters
	Serial baseline performance
	Intra-chain parallelism using a directed graph
	Calculating performance

	VelociTI Software Implementation
	Implementation Details
	Tool Evaluation

	TI Performance and Scalability Evaluation
	Case Study 1: What is the best estimated performance for a given hardware implementation?
	Case Study 2: Design Exploration and Scalability

	Related Work
	Quantum architecture
	Abstract architecture-level modeling

	Conclusion
	References

