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Abstract—Managing advanced hotspots on modern micropro-
cessors is a critical and worsening issue, affecting performance,
product reliability, and device lifetime. Many thermal manage-
ment techniques focus primarily on remaining below a critical
temperature, and while they are successful to that end, they come
with a significant performance cost. This cost stems from the large
temperature guardbands that are needed to ensure device safety
and correct IC operation. These guardbands must be sized to
account for multiple factors including 1) control-loop latency, 2)
thermal sensor delay, 3) thermal gradients inside timing paths
that could result in timing violations, and 4) the instantaneous
temperature delta between a temperature sensor and the true
peak temperature on the IC.

This work demonstrates the need for novel hotspot avoidance
techniques that can react quickly and simultaneously account for
each of these concerns in order to safely maximize performance.
Recently introduced hotspot metrics—Hotspot-Severity and Max-
imum Local Temperature Difference (MLTD)—are used in order
to allow model designers to have a single optimization target that
accounts for each of these thermal concerns simultaneously. We
present Boreas, a novel hotspot mitigation technique that uses a
Machine Learning model implemented in an on-chip specialized
hardware accelerator that leverages micro-architectural perfor-
mance counters. Boreas outperforms existing thermal manage-
ment techniques while remaining lightweight and well-suited for
implementation in hardware. Even with a conservative thermal
sensor delay, Boreas is able to predict severity with high precision,
resulting in effective hotspot mitigation on unseen workloads.
These machine learning models were, therefore, able to select a
frequency that was 4.5% better than thermal only models on
average, and up to 9.6% higher in the best case, while having
the same reliability budget as the thermal models.

I. INTRODUCTION

As industry scales to low single-digit process nodes, thermal
hotspots have become a first-order design challenge for a wide
range of applications. While hot chips have been around for
years, recent work has shown the existence and abundance of
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advanced thermal hotspots, or portions of on-chip logic which
do not just get hot, but heat up rapidly and in a manner that is
both non-uniform and application dependent [1]. Addressing
advanced thermal hotspots using conventional techniques like
dynamic voltage and frequency scaling (DVFS) [2] would
require large guardbands resulting in non-trivial performance
loss. Instead, the systems community needs new hotspot
mitigation methods which can avoid hotspots with limited
performance loss.

Modern computer systems use an ensemble of technologies
to prevent hotspots, from thermal sensors and DVFS [2] to
floorplanning [3]–[5] and physical cooling [6]–[8]. However,
due to the microsecond granularity at which advanced hotspots
can occur [1], these techniques alone are no longer cost-
effective and lightweight enough to maintain a safe CPU oper-
ating temperature. This is primarily because these techniques
are reactive, and the time it takes for them to take effect is
longer than the time it takes for hotspots to appear. In terms
of techniques like floorplanning, prior work has studied the
utility of extending existing floorplanning mitigation methods
and has shown that even scaling the area of hotspot prone
functional units by 10× in a 7nm processor still results in
Hotspot-Severity worse than in 14nm [1].

Given the speed at which advanced hotspots occur, chip
designers can no longer rely solely on temperature readings
from thermal sensors or floorplanning based methods. Instead,
new fine-grained, architecture level mitigations are needed
which take into account multiple aspects of the system. To this
end, there has been recent work which has provided updated
models, metrics, and methods for characterizing advanced
hotspots, which can be used by researchers as a foundation
for building mitigation techniques. One contribution of the
researchers is the design of a function called Hotspot-Severity
which uses both absolute temperature and localized tempera-
ture differences to determine how imminently a hotspot will



occur in a region of the chip. We build on this prior work
to design the first machine learning-based architecture-level
mitigation method for advanced hotspots. In this work, we
also study the extent to which microarchitecture counters can
inform us about whether a hotspot is occurring and whether
we can use it to predict hotspots ahead of time as part of
Boreas.

In summary, this paper presents a novel machine learn-
ing based hoptspot mitigation method which uses Hotspot-
Severity and telemetry data to predict hotspots before
they arise and dynamically scale voltage and frequency.
By acting preemptively, it is possible to apply conventional
techniques like DVFS without incurring the same performance
penalty that would exist from using DVFS in the reactive
manner. We name our mitigation after the Greek God of
winter, Boreas, who is said to chill the air with his icy breath.
To motivate Boreas, we first discuss and analyze 1) an oracle
model, and 2) static, temperature-based techniques that rely
only on temperature sensors. We then describe Boreas in
detail, contextualize it among previous works, and perform
a comparative evaluation of it with related work. For this
evaluation, we use a simulated modern desktop CPU similar
to Intel Skylake running the SPEC CPU2006 benchmarks. We
show that Boreas surpasses the performance of temperature-
only techniques, resulting in accurate severity prediction and
mitigation on unseen workloads. Boreas can select a frequency
that is 4.5% better than thermal only models on average, and
up to 9.6% higher in the best case, while being as reliable as
the thermal models.

II. BACKGROUND

A. Advanced Thermal Hotspots

Advanced thermal hotspots have arisen due to recent chip
design trends in the microprocessor industry. While transistors
scale to ever smaller dimensions, die area remains about the
same with the die packing more functionality (and transis-
tors). With the end of Dennard scaling [9] and continuous
increase in transistor density, power density for computational
logic is increasing rapidly. Additionally, microprocessors are
becoming increasingly heterogeneous [10], [11]. It is typical
for modern processors to run a wide variety of workloads—
everything from security kernels, to video encoding/decoding,
to multiply-accumulate (MAC) rich kernels for machine learn-
ing. This exercises logic with very different switching activity
that is very close to each other. Because of architecture
heterogeneity, increased power density, and asymmetry in
switching activity from workloads, advanced thermal hotspots
are significantly faster, non-uniform, and application depen-
dent than previously observed hotspots. These characteristics
make it very challenging (if possible) to guarantee hotspot-free
operation at design time using conventional mitigations.

B. HotGauge

The benefits of using a silicon-calibrated simulation en-
vironment such as HotGauge rather than real silicon are

Fig. 1: Hotspot-Severity as in HotGauge [1]

profound and essential to this work. First, a simulation envi-
ronment allows for the evaluation of future technology nodes
and features not present in current processors, including those
that would require additional circuitry or modifications to
the micro-architecture of the processor. Second, the detailed
performance, power, and thermal simulations allow for low-
level insights into the state of the processor that are simply not
feasible in silicon; most notably, perfect knowledge of the ther-
mal state of the entire thermal stack. Additionally, a simulation
pipeline has the ability to simulate pushing a processor up
to—and even past—it’s thermal limits without destroying it or
having to circumvent the thermal protection schemes currently
implemented in both hardware and software.

HotGauge [1] is the first open source implementation of a
simulation pipeline which includes performance, power, and
thermal simulation as well as novel metrics for automati-
cally classifying and detecting hotspots (including advanced
hotspots). Now that such a methodology exists, this allows for
mitigation methods to be implemented, tested, and compared
using simulation. We utilize this methodology in our work to
propose the first public study of a mitigation for advanced
thermal hotspots. To the best of our knowledge, there have
been no novel hotspot mitigation methods which address the
speed, asymmetry, and application dependence of advanced
thermal hotspots.

While previous works generally use temperature or some
derivative (e.g., heat flux) as the metric to determine whether
a hotspot has occurred [3], [6], [12]–[14], this disregards
the effect that high relative temperature differences within
a certain area can have on a chip. On the other hand, Hot-
Gauge characterizes hotspots using both absolute temperature
and maximum localized temperature difference (MLTD) to
model the two ways that hotspots can harm a system. This
includes: (1) the effect of absolute temperature, especially
when surpassing the thermal design point (TDP) of the chip,
and (2) the relative temperature difference within some radius
(i.e., MLTD) which can affect safe clock timing margins.
When these margins are violated, the processor can either
malfunction or potentially crash. These two factors are both
combined into one Hotspot-Severity metric which can account



for both device failure and timing concerns using a single
value. The values that Hotspot-Severity can take range between
0 and 1, where a value of 1 indicates that the chip is in im-
mediate danger of malfunctioning or encountering permanent
physical damage. This work uses the same Hotspot-Severity
parameters as HotGauge, although it should be noted that
they can also be tuned to fit other parameters of operation
for other design-processes and circuit implementations. Given
these parameters, the Hotspot-Severity behaves as shown in
Fig. 1, and will be 1.0 under conditions including: 1) a
temperature of 115C with little to no MLTD (i.e a uniformly
hot chip), 2) a temperature of 80C with an MLTD of 40C (i.e.
an advanced hotspot), and 3) somewhere between (1) and (2),
with a temperature of 95C and an MLTD of 20C.

This work uses Hotspot-Severity as part of a machine
learning model to predict the occurrence of hotspots. Then,
hotspots can be avoided by selecting an appropriate voltage
and frequency point for the processor during runtime. Hotspot-
Severity can be used to compare the impact of different
architectural changes (e.g., floorplans) on hotspot behavior,
which is demonstrated in Section III by comparing the results
of existing techniques with the novel machine learning models
developed in this work (Section IV).

C. Previous Work on Machine Learning for Thermal Manage-
ment

Researchers have previously utilized machine learning for
thermal management on modern single and multi processors
[15]–[22]. Least square regression (linear or non-linear) as a
supervised learning method has been a popular approach to
the thermal management problem on processors [21], [22].
Cochran and Reda [20] combined least square regression with
k-means clustering to reduce the dimensionality of the data
and consequently runtime overhead of prediction.

Another popular method in recent years has been the appli-
cation of reinforcement learning, most generally Q-learning
as an online training methodology. Lu et al. [17] employed
Q-learning with linear combination of series of radial basis
functions, using temperature readings from sensors to form
the state space. Splash-2 benchmarks, McPAT, Sniper and
HotSpot were used to generate power traces and convert them
to temperature values, with the ultimate goal of reducing
peak temperature throughout the chip. Iranfar et al. [16]
implemented a heuristic approach alongside Q-learning to
restrict the learning state space and achieve a faster con-
vergence. States are based on temperature and temperature-
gradients and actions are comprised of thread migration and
DVFS. They have shown their method has improvement on
average performance, thermal cycle amplitude and thermal
cycle frequency compared to previous works. Das et al. [19]
used Q-learning by forming the state space based on stress and
aging values. The action space is comprised of thread affinity
and CPU governors at fixed intervals. Ye and Xu [18] used
a deep-Q-network using processor power state (run vs sleep)
and task queue status as its state space. Their action space
has two components, the core they assign the tasks to and the

preset mode of that core. The result is an agent which seeks
to reduce the power consumption with minimum impact on
performance.

One thing that all of the mentioned reinforcement learning
methods have in common is that they are online training
algorithms. They start with no knowledge of the environment
and gradually learn the optimal policy that result in highest
reward (depending on the goal they’ve set such as lowest
peak temperature, lowest stress, longest time to failure, etc.).
During the course of this learning process, the agents make
considerably sub-optimal decisions that necessitates having
a backup control strategy to prevent catastrophic failures
from happening. Additionally, another general problem with
reinforcement learning methods is their sample inefficiency
and the high number of iterations they need to achieve an
optimal answer, which is why many of the mentioned previous
works try to restrict the design space and implement heuristics
to achieve a faster convergence. This again underpins the
need for safety precautions when using any learning based
methodology, before they reach an acceptable level of accu-
racy. Finally, all of the previous work uses machine learning
to predict temperature, but they have not been shown to
predict hotspots.

III. A CASE STUDY ON STATIC, TEMPERATURE-ONLY
BASED VOLTAGE AND FREQUENCY SELECTION

Modern processors have to avoid thermal conditions that
could result in timing violations or circuit damage while
keeping performance high. The main focus of this work is
to illustrate how using machine learning to predict advanced
hotspots can allow for the use of higher performance Voltage
and Frequency (VF) pairs for DVFS. In this section, a variety
of VF selection algorithms are described and evaluated. The
goal of each algorithm will be to choose the most performant
VF pair such that the maximum hotspot severity remains below
1.0, thereby preventing device malfunction and damage. All of
the algorithms evaluated in this work select a single frequency
for the entirety of the application trace which each last between
the orders of tens and hundreds of milliseconds, a realistic
timescale for thermal management. This sections’ proposal is
not to replace DVFS with just one optimal VF point, but to
illustrate how hotspot prediction can enable the selection of a
close-to-performance-optimal VF point that avoids hotspots.

A. Simulation Environment

This work utilizes the same system models and configura-
tion parameters as HotGauge, which have been validated and
released open source [1]. This includes a performance, power,
and thermal model of a desktop client processor based on an
Intel Skylake. Like in the HotGauge work, we use the same
voltage and frequency which is representative of running the
processor in turbo mode, in order to obtain the worst case
hotspot behavior of the chip to test our machine learning
models on. The exact performance, power, and thermal models
details, including the floorplans, are the same as those used in
the HotGauge publication [1]. Similar to the HotGauge work, a



Fig. 2: The peak Hotspot-Severity of each workload over
a range of frequencies. The combinations of workload and
frequency with a Hotspot-Severity of 1.0 are not safe operating
points and are shaded in black. Values 0.5 and below are
white and the remaining values are shaded according to the
magnitude of their Hotspot-Severity.

subset of 27 SPEC2006 workloads are evaluated in this work.
A full list of these workloads can be seen in Fig. 2. Each
workload executes on a single core while the others remain
idle. For each workload, the frequency of the processor is
varied from 2.0GHz to 5.0GHz in 250MHz steps, with the
voltage set as shown in table I.

TABLE I: Select Voltage and Frequency (VF) pairs for the
7nm processor modeled in this work

Voltage [V] 0.64 0.71 0.77 0.87 0.98 1.15 1.4
Frequency [GHz] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

This work includes evaluations where the thermal sensor is
placed at various locations on the active core. The specific lo-
cations are chosen using the same methodology as HotGauge,
namely by using K-means clustering to identify common areas
on the core where hotspots arise, repeated for different values
of k. Unless otherwise noted, temperature sensors in this work
are located near the ALUs (in the EX stage of the pipeline),
and correspond to sensor 3, which is shown later in this work,
including in Fig. 5.

Given the rich dataset produced by the simulation pipeline,
a variety of models can be constructed that are differentiated
only by the information that is made available to them. The
models include two baseline categories; 1) an optimally per-
forming oracle (Sec. III-B) and 2) models that react based on
thermal sensor readings similar to ones currently implemented
in hardware (Secs. III-C and III-D). Together, these models
provide upper and lower bounds points of reference when
evaluating the machine learning model developed as part
of this work.

B. VF Oracle

The oracle-model assumes perfect knowledge of application
behaviour and the corresponding impact on IC thermals. While
this model is by no means possible to implement, it serves as
an important upper bound for how well a model could possibly
perform. By definition, the oracle model will select the most
performant VF point at which the maximum Hotspot-Severity
remains below 1.0 for the duration of the trace.

This model is developed by computing the peak Hotspot-
Severity while running each workload under all simulation
configurations, and then choosing the optimal VF settings for
each scenario. Fig. 2 shows a tabulation of this data. Based
on the peak Hotspot-Severity in each simulation, none of the
workloads can safely operate at 5.0GHz, while all of them
can do so at 3.75GHz. The oracle selects the highest VF point
where the Hotspot-Severity is below 1.0.

C. Global VF Limit

The most heavy handed way to eliminate hotspots is simply
to set the maximum VF point such that the peak Hotspot-
Severity of any workload remains below 1. This effectively
models a default safe nominal frequency configured for most
microprocessors but misses opportunities to boost frequency
and increase single-thread performance for certain work-
loads using application-aware DVFS techniques like Turbo
Boost [23]–[25].

Given Fig. 2, the globally safe VF limit for the system in
this work with the given workloads is 3.75GHz. This results
in optimal performance for only 2 of the 27 workloads. The
majority of workloads are set to a frequency that is 13% lower
than the oracle, with a worst case frequency reduction of 26%.

D. Thermal Aware VF Limits

In contrast to avoiding hotspots by setting a global VF limit,
industry has opted to set dynamic limits based on observed
processor temperature. To evaluate the effectiveness of this
technique, models are constructed in this section that use only
the current temperature value for their prediction of whether
or not the peak Hotspot-Severity will be less than 1.0.

As previously noted, the thermal sensors in this work are
considered under the most optimistic conditions in terms
of location, noise, precision, and accuracy. This is done to
evaluate the thermal-aware models developed in this section
under the most generous of conditions.

1) Application Specific Critical Temperatures: In order to
create thermal-aware models, critical-temperatures are first
found for each workload at all possible frequencies. Here,
the critical-temperature is defined to be the lowest observed
temperature on a given sensor when the Hotspot-Severity is
1.0. The system uses this as a threshold for each workload to
which it responds by decreasing the frequency.

From this data, the impact of sensor location on critical
temperatures is apparent. When comparing critical tempera-
tures across the top 4 sensors, all workloads had at least one
frequency where the critical temperatures varied by at least
13C. Furthermore, about half—13 of the 27 workloads—had



Fig. 3: Overview of Boreas, a framework to mitigate advanced
hotspots using a low cost ML model and hardware telemetry
data.

critical temperatures at some frequency that varied by over
20C, with a peak variance of over 37C between sensors. This
means that, the temperature at which the processor needs to
throttle varies by at least 13C based on sensor location, even
if the workload is known. Sensor delay is also very impactful.
For example, gromacs can safely run at 4.75GHz up to a
temperature of 70C before throttling when the delay is only
180µs but can never run above 4.25GHz with a sensor delay of
960µs because a hotspot can arise in less time than it takes to
read the sensor, even when starting from ambient temperatures.
In comparison, sjeng can safely reach over 65C at 5GHz with
a 960µs delay, which indicates that it doesn’t have high spikes
in power that could lead to fast hotspots.

2) Global Critical Temperatures: In order to complete
this thermal aware frequency selection algorithm, all possible
workloads must be considered. Thus, the algorithm must select
the lowest critical temperature at every frequency across all
workloads. Thus, workloads with particularly high critical
temperatures are severely limited by those with lower critical
temperatures. With a 960µs delay, libquantum cannot ever run
above 4.0GHz, so every workload is limited to that. Even
with 0 delay, workloads like cactusADM, which can run safely
at 4.75GHz, are limited by the workloads with lower critical
temperatures. For example, games, which has a critical temper-
ature of as low as 60C even when running at 4.0GHz. So, even
though cactusADM can run without concern at 4.0GHz, it will
be throttled if the temperature sensor reaches 60C. The impact
of this variation of critical temperatures between workloads
has dramatic impact on frequency selection.

IV. BOREAS: MAIN IDEAS

An overview of Boreas is shown in Fig. 3. The HotGauge
framework is used to generate the inputs to Boreas, which are
Hotspot-Severity, performance counters, and thermal sensor
readings. The configuration of HotGauge in this step is the
same configuration used in Section III. Boreas then operates
on these inputs by feeding them into the ML model composed
of Gradient Boosting Trees (GBTs) and trains a regression
model. The model is trained to accurately predict the severity
of the future steps using the input attributes. The predicted
output is then fed into the V-F controller which selects the

appropriate V-F pair for the next time step. The model inputs—
shown above as red arrows—are fed into Boreas every 1̃ms
(960µs). In the following subsections, we describe in detail
each of the components of Boreas.

TABLE II: Boreas model parameters.

Dataset 500K instances extracted from SPEC2006
benchmarks shown in Table III

Features Temperature sensor data alongside
microarchitectural attributes

shown in Table IV

Hyperparameters α = 0.3, γ = 0,
max depth = 3, n estimators = 223

A. Regression Models with GBTs

Machine learning has been used in different areas of com-
puter architecture research. Prior work has employed machine
learning to study, design and improve prefetchers [26], [27],
cache management techniques [28], [29], and branch predic-
tors [30]. While striving to achieve models with the best
accuracy, one major concern in all of these studies is how
much the model costs. Cost can come in different forms such
as memory-footprint, circuit, area, power consumption and
prediction latency. While a deep learning model can probably
provide the highest accuracy, it might have a prohibitively high
cost, ruling it out for hardware implementation. Therefore, in
this section we describe new hotspot prediction models that
have acceptable cost while maintaining accuracy.

A regression model is trained to predict the hotspot sever-
ity of workloads. The models developed for this study use
Gradient Boosting Trees (GBTs) using XGBoost library to
train a regression model that predicts the maximum severity
in the next time-steps. Training a GBT for regression is pretty
straightforward. An initial value (usually the mean value of
target label for all instances) is used as the initial prediction for
severity. Using this initial number, the residuals are calculated.
In this case residuals are the difference between the real
values and the predicted values. Next, depending on the model
configuration (e.g. number of trees, maximum depth of trees,
maximum number of leaves, etc.) a tree is trained on the
calculated residuals. At this point we have an original mean
value and a tree and we have to calculate the new residuals. To
do this, the attributes of each instance is used to traverse from
the root to the leaf, and the value of that leaf multiplied by
the learning rate is added to the original prediction. In other
words, each prediction by a tree helps to bring the original
number closer to the real value. This procedure is repeated
until the number of trees in the configuration is exhausted.
Table II shows the final configuration used to train the Boreas
model where alpha is the learning rate, gamma is the minimum
loss reduction needed for a split, max depth is the maximum
depth of trees (used instead of maximum leaf nodes) and
n estimators is the number of trained trees in the model.

GBTs are not only one of the most powerful models avail-
able, they also have several characteristics which makes them a



desirable choice for this application. GBTs do not need feature
normalization, they can be visualized for interpretability and
they have a manageable hardware implementation due to the
simplicity of tree logic. However, one downside to these
models is that they are easy to overfit. Too many trees or trees
that are too deep can cause the model to memorize the input
dataset, showing very high accuracy on the training set but
failure to generalize on the data that it has not been exposed
to (testing set). Therefore care must be taken when tuning the
hyperparameters.

Train/Test sets. Before training the Boreas model, we first
divide the set of workloads into training and test sets. When
a workload is assigned to a set, every instance from that
workload becomes exclusive to that set. This is done to prevent
any knowledge leakage from the train set into the test set. We
performed set assignment based on the data shown in Figure
2, where workloads are sorted by their peak Hotspot-Severity.
Every fourth workload was assigned to the test set, with the
remaining workloads being assigned to the training set. The
goal of using this method of assignment is to impose as much
diversity into the selection process as possible to prevent any
bias in the application selection. In other words, workloads
with a range of hotspot behavior are assigned to each of the
sets to ensure that the model is able to learn, generalize and be
evaluated on different workloads with a wide range of hotspot
behaviour. The resulting training and test sets are shown in
Table III. Our training set comprises 411K sample instances
from workloads in the train set. The size of the test set is
70K instances from running workloads in the test set. Each
instance is a row with 20 features (Table IV) extracted every
80 microseconds from 12 milliseconds of total runs.

Grid search CV. Next, grid-search cross-validation is per-
formed on the instances in the training set. A grid-search
is done on the model parameters such as the number of
trees, the depth of trees, the sample instance weights, etc. to
find the most accurate model with the lowest MSE (Mean
Squared Error). Cross-validation is done in the form of a
modified Leave-One-Out Cross-Validation (LOOCV) in which
an application is designated as the validation application and
every instance of that application is taken out from the training
set. The rest of the applications comprise the training set which
are used for grid-searched training. Every configuration result
in a model that is validated against the validation application.
In the end, the most accurate model is chosen from the list
of all generated models. This decision is made based on the
average and standard deviation of the trained model accuracies
for each parameter set configuration. The grid-searched cross-
validated model is then used on the test set. Our chosen model
is comprised of 223 trees with each having the maximum depth
of 3, and has MSE of 0.0094 which shows a highly accurate
severity predictor.

B. Feature Selection

Models were initially trained using 78 system attributes.
While XGBoost is designed to be able to handle a large
number of features, using a large number of features also

increases overhead. In the context of a hardware implementa-
tion, it is particularly important to limit overhead, as a higher
number of features can directly increase the implementation
cost in the form of increased area, latency, and/or power,
alongside an increased memory footprint. In order to reduce
these overhead, a feature selection study was conducted to find
the most influential features on the models accuracy. Keeping
these attributes and eliminating the other less effective ones
should lead to the nearly the same level of accuracy from
the model while reducing the total number of features used,
thereby reducing the model overhead.

The feature selection process is as follows: We first trained
a model using all 78 features that were extracted from our
simulation runs. XGBoost uses gain and similarity scores to
design nodes and the trees. The higher the gain of the feature,
the more important it is in the regression evaluation. We sorted
these features and iteratively removed them (from the least
important) until we saw a decrease in the model accuracy at
20 features (Table III). This was expected since the top 20
features have 99% of the total normalized gain which allow
the model to achieve very good accuracy.

Table IV shows the top 20 attributes selected to train the
model sorted from the least to most important feature. Tem-
perature sensor data is an obvious choice here due to its clear
effect on emerging hotspots (78% of the total gain). However,
the remaining 22% is divided between the microarchitectural
features. Looking at top attributes, our expectation was to see
frequency as a prominent feature but that’s not the case. While
frequency was passed to the feature selection algorithm during
the training process, its effect seems to be reflected in other
features. In other words, while frequency is not part of the
top feature list, its effect is reflected in features such as total
misses or committed instructions etc.

C. Temperature-Only Models

To show the importance of using microarchitectural fea-
tures alongside temperature and illustrate the fact that sensor
data alone is not indicative enough of the emergence of
hotspots, a comparative study has been conducted with a
previous work with a similar approach. Cochran and Reda
[20] extract performance counters from each core and use
this data to predict the temperature in the future. During
the offline training process, steps are taken to reduce the
complexity of the prediction process during system runtime.
The raw performance data is first fed to a Principle Component
Analysis (PCA) module which reduces the dimensionality of
data without losing important information required for training
an accurate model. The principle components are then used to
create representative centeroids for workload phases using k-
means clustering method. A phase in a workload is a period
in which the workload exhibit similar power and temperature
patterns. Next, the thermal prediction model is learned using a
linear regression of the phases for each frequency. The model
is then used during runtime operation to predict the future
temperature and adjust the frequency to a safe threshold.



TABLE III: Workloads divided between train and test sets

Train milc, bwaves, soplex, gobmk, sjeng, leslie3d, gcc, calculix, perlbench astar, tonto, zeusmp, wrf, lbm, mcf
sphinx3, povray, libquantum, namd, gromacs

Test cactusADM, omnetpp, GemsFDTD, h264ref, bzip2, hmmer, gamess

TABLE IV: Top 20 attributes sorted by Normalized Gain (importance) that are used to train the model. There is no loss in
regression accuracy if the model is trained on these top 20 features rather than all 78 features. Temperature sensor data is the
most dominant feature in severity regression (78% normalized gain).

Attribute [importance] Attribute [importance] Attribute [importance] Attribute [importance]
temperature sensor data [78.1%] ROB reads [2.2%] itlb total misses [0.5%] branch mispredictions [0.3%]

cdb alu accesses [3.1%] total cycles [1.7%] BTB read accesses [0.5%] LSU duty cycle [0.3%]
committed instructions [2.5%] ... icache read accesses [1.3%] ... dcache read misses [0.4%] ... IFU duty cycle [0.3%]

dcache read accesses [2.5%] committed int instructions [1.0%] cdb fpu accesses [0.4%] FPU cdb duty cycle [0.2%]
busy cycles [2.3%] dtlb total accesses [0.8%] MUL cdb duty cycle [0.4%] dcache write accesses [0.2%]
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(b) gamess

Fig. 4: Frequency vs. max severity for gromacs and gamess
using different thermal models. TH-00 is a thermal model
based on globally safe threshold. TH-05 and TH-10 are
thermal models with thresholds increased by 5 and 10 degrees
respectively. The higher the threshold, the more aggressive
frequencies adopted by the controller become. While safe
for gamess, relaxing the global threshold results in reliability
issues (hotspot incursions) in gromacs (shown in red for TH-
05 and TH-10)

Figure 4 is a case study to show that even with a perfect
prediction of temperature using thermal models, there is a
considerable performance gap between what a system can,
but does not achieve due to reliability concerns. In this figure
TH-00 is a thermal model trained on a threshold that is
safe for all workloads in the training set. The controller uses
these thresholds and current temperature reading to increase
or decrease the frequency of the system. TH-05 and TH-10 are
the same thermal model but with a more relaxed thresholds.
In these models the thermal thresholds are increased by 5 and
10 degrees respectively. Therefore the controller can choose

more aggressive frequencies for the system.
The goal of the controller, as always, is to adjust the

system frequency to prevent the severity going above 1. This is
achieved by using TH-00 for gromacs in 4a. However, relaxing
the threshold by 5 degrees (TH-05) would result in a bad
decision around 1 ms. A higher frequency is chosen by the
controller that raises the severity to 1 for several steps before
correcting the course. The problem is exacerbated by using
TH-10.

Figure 4b shows the same set of figures but this time for
gamess in test set. Similar to gromacs, TH-00 is also safe for
gamess. But contrary to what we saw with relaxed models for
gromacs, gamess works reliably using TH-05 and TH-10. The
controller sets the frequency at 3.75 GHz most of the time
and occasionally adjusts it to 4 GHz when using TH-00. This
meets the global thermal thresholds while training the model
on the training set. Increasing the threshold will allow the
controller to be more aggressive in selecting higher frequencies
for workloads such as gamess, but can cause hotspot on one
or more workloads (for example gromacs). Increasing the
threshold to TH-10 gradually increases the frequencies chosen
by the controller and will eventually lead to the frequency of
4 GHz kept by the controller for the whole run. This happens
without any incursions into the dangerous 1.0 severity levels.

This case study clearly shows that the common practice of
using global thermal thresholds to prevent reliability issues
can adversely effect the performance of the system. As we
will show, a non-agnostic model that uses system attributes
alongside temperature can lead to a higher performance while
being as reliable as thermal models.

V. EVALUATION WITH DYNAMIC SIMULATIONS

To evaluate our model, dynamic architectural and thermal
simulations are performed using HotGauge. During these sim-
ulations, collected microarchitectural attributes are combined
with temperature data to create a feature vector. This feature
vector is passed to the model to make a severity prediction.
The result of this regression is used by the controller to adjust
the frequency to a safe value. Alongside our model, thermal
models are trained on perfect temperature data. The analysis
shown in next sections illustrates the advantage of using a
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Fig. 5: Left figure shows temperature data from sensors placed
in 7 different locations on the chip. 3 of the 7 sensors cannot
show the temperature of the chip properly. The four others
have twenty degrees difference between the value they report.
Considering the best sensor location (tsens03), temperature is
below 100 degrees almost all the time but severity reports very
high values. This shows we can have hotspot incursions even
if an acceptable temperature is reported by a sensor.

model sensitive to diverse behavior of applications compared
to a thermal only model.

A. Frequency controller

The trained model introduced in section IV-A is deployed
to make frequency decisions during system runtime. Each
timestep is 80 Microseconds and decisions are made every 12
timesteps (960 µs). Therefore the controller can either increase
or decrease the frequency around every 1 miliseconds. At
this time, features extracted from system attributes alongside
temperature sensor data is sent to the model, which makes a
prediction about the future severity. If it finds it unsafe to
continue with the same frequency, the controller decreases
the frequency by 250 MHz for the next 1ms. However, if
it finds it safe to stay at the same frequency, the controller
checks the possibility of operating at a higher frequency.
The model predicts the severity at 250 MHz higher, and
if prediction shows an acceptable severity, the frequency is
increased. Otherwise the system will operate at the current
frequency for the next period.

B. Hotspot Mitigation Through Hotspot Prediction

Sensor placement can have a huge impact on how the
controller reacts depending on its perceived temperature state.
Figure 5 shows temperature data from sensors placed at 7
different locations on the chip. Three of these 7 sensors
(tsens04, tsens05 and tsens06) are not placed in positions to
correctly reflect the temperature variations on different parts
of the chip. Their data only reflects the fact that the chip
is gradually getting warmer. Therefore they are not good
candidates to predict and prevent hotspots.

The remaining four (tsens0-3) capture these variations with
different degrees of accuracy. tsens00 is the least and tsens03
is the most accurate sensor. Interestingly, there is up to 20
degrees difference in temperature values readings. Therefore
we have to have a clear understanding of (micro)architecture
components and heat dissipation structure of the chip to choose
a perfect location for the sensor. Considering everything, even
our ideal sensor location shows the temperature to be below
90 degrees, while severity metric is above 1 during all those

periods. This illustrates the point discussed in section II-B that
we can have hotspot incursions even if temperature sensors
show relatively safe values. This is another reason why large
guardbands are employed to prevent hotspots in a global
manner.
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Fig. 6: Frequency vs. max severity for bzip2 using ML
models with different guardbands. ML00 is the model with
no guardband (severity threshold at 1.0). ML05 and ML10
are models with 5 and 10 percent guardbands respectively
(severity threshold at 0.95 and 0.9 respectively). The larger the
guardband, the lower the frequencies selected by the controller
(safer but with less performance). ML05 trades-off reliability
and performance well.
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Fig. 7: Average frequency of unseen workloads using every
model normalized to the baseline frequency. ML00 has the
highest performance but the least reliability. ML10 is as safe as
globally set thermal models but with very small performance
advantage. ML05 achieves 4.5 percent performance gain com-
pared to TH-00 on average without any hotspot incursions.

C. Targeting different relibility budgets by setting prediction
guardbands

The goal is to train the most accurate model that can
predict the future severity with high precision. This allows
the controller to adjust the frequency so that the system can
operate close to the max severity of 1. In practice, however,
no matter how accurate the model is, there can be an instance
where the model mispredicts. This misprediction can lead to
a wrong decision regarding frequency adjustment, which in



turn can lead to dangerously high severity, something that is
not acceptable to chip designers. This is the reason why many
manufacturers set conservative thresholds regarding temper-
ature to decrease the possibility of damage to a negligible
amount.

To respect these concerns and to take the situations with
sudden increase in severity into account, a range of guardbands
were applied to the model’s predictions. Controller consid-
ers these guardbands during the decision making process to
increase or decrease the frequency. Figure 6 shows severity
prediction vs frequency using three different guardbands (0,
5, 10) for bzip2 as an illustrative example. The guardbands
set the threshold offset for frequency controller. The original
threshold is set to severity of 1. Anything above this threshold
is detrimental to the system and therefore the controller uses
the model’s prediction to prevent this by making an appropriate
decision after each interval. A guardband of zero is the same
as having no guardband and the threshold stays at severity
of 1 (ML00). A guardband of 5 decreases the threshold by
5 percent, meaning the severity of 0.95 (ML05). At this
threshold, controller decides whether to decrease, or not to
increase the frequency if the predicted severity is above 0.95.
The same can be said about the guardband of 10 and severity
threshold of 0.9 (ML10). The larger the guardband, the more
conservative the controller becomes.

Clearly there is a trade off here. The threshold can be set
high to make the system more reliable at the expense of lower
frequency and lower performance. On the other hand if we
set the guardbands too low, the system can operate at higher
frequencies. However, this would result in an unreliable envi-
ronment. First plot in figure 6 shows such situation for bzip2.
At 0 guardband, controller sets the frequency too high and
this results in several steps where the severity reaches 1 and
hotspot incursions happen. But with the higher guardbands,
while the severity gets very close to 1, it never reaches it.
ML10 is the safe option. The large guardband creates a large
gap between the maximum severity achieved in dynamic runs
and the max severity of 1. However, this comes with the caveat
that the adopted frequencies are too conservative. Therefore
the performance gain is minimal. ML05 seems to be be the
sweet spot. It trades-off reliability and performance well. It
tries to get as close to severity of 1 as possible by adopting
the highest safe frequency possible (ML05 gets close to 0.99
at 6.5 ms but reduces the frequency to prevent any incursions).
This results in acceptable reliability and high performance at
the same time.

D. Performance Analysis

By incorporating temperature sensor data and system at-
tributes, the model predicts future severity. A safe guardband
is applied to the threshold and the frequency is adjusted
so that the system can perform with the highest reliable
frequency. Figure 7 shows the average frequency of ML model
with different guardbands alongside thermal model average
frequency in all workloads. These average frequencies are

normalized to the baseline frequency of 3.75 GHz, which is
safe for all workloads, to give us a clear comparison point.

The thermal model achieves 5.7 percent improvement in
average frequency compared to the baseline while ensuring a
reliable environment for the chip. The story is different for ML
models with different guardbands. As we have seen in figure
6, the guardband of 0 is not always safe for our workloads
and can lead to hotspot incursions detrimental to our system.
However, there is clear advantage in the performance. On
the other hand, ML model with a guardband of 10 while
safe, adjusts the frequency very conservatively and many
opportunities for performance gain is lost. This is clear in
hmmer where ML model performs worse compared to the
thermal model, of which the latter is already cautious in
choosing higher frequencies. The sweet spot is the guardband
of 5, where we achieve the same level of reliability as the
thermal model on both training and test sets, while having a 4.5
percent improvement in average frequency in all workloads.

Figure 8 shows the frequency vs. max severity plots for
all unseen workloads in our test set using both Boreas (ML
model with 5 percent guardband) and the thermal model. The
left axis shows the frequency in GHz drawn with the solid
black line. The right axis shows max severity drawn with a
grey dashed line. As we can see in this figure, no application
in the test set reaches the severity of 1 therefore both models
have the same reliability and result in no hotspot incursions.
However, as we have seen in figure 8, Boreas performs either
at the same or one or two steps above the frequencies chosen
by the thermal model (except in the case of hmmer). Boreas
improves performance up to 9.6 percent in bzip2.

E. Overhead Analysis

Memory overhead. To have a high performance and re-
liable hardware implementation, the model must be accurate
and cost-effective at the same time. Figure 9 shows the average
MSE (Mean Squared Error) of cross-validated models vs. their
size. Clearly the smallest models (a couple of shallow trees)
cannot make good severity predictions and although small,
have very low accuracy. As the size increases, the model
gradually becomes more accurate and MSE decreases. This
happens until model becomes too complicated and overfits
on the training set. A small accurate model is selected for
dynamic runs just before overfitting happens. Considering
the model to be comprised of full trees with each node
storing a 32-bit floating point value, the total size of model
weights is less than 14KB. In addition to dedicated hardware
implementation, the small model size allows it to be stored
in lower level caches or its own scratch-pad memory to be
invoked every 1ms.

Performance overhead. A model trained by XGBoost is
a collection of trees where each tree contributes to bring-
ing the prediction closer to the real value (making it more
accurate). Considering this structure, the implementation is
done using comparison operations (from the root of the tree
to the leaf) and an add operation for the summation of the
values in the leaves of trees. The Boreas model in the paper
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Fig. 8: Dynamic runs of unseen workloads shown using TH and Boreas (ML05) models for 150 timesteps (12 miliseconds).
First this shows how Boreas allows controller to choose higher frequencies compared to TH-00 (except in hmmer) while
keeping the severity below 1 at all times. Second it shows the range of behavior in different applications and the need for an
adaptive, hardware telemetry dependent control mechanism to achieve higher performance.
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Fig. 9: Average MSE (Mean Squared Error) of cross-validated
models vs. model size in Bytes. Increasing the size of the
model, lowers the MSE until a certain point. After that
the model overfits on the training set and MSE increases.
The smallest, most accurate model is chosen for dynamic
evaluations.

(ML05) comprises 223 trees each with a maximum depth
of 3. Therefore for a single prediction, we are going to
need 223 times 3 or 669 comparisons to traverse the paths
from root to leaves and 222 add operations to accumulate
the regression values in the leaves. This adds up to close
to 1000 operations for one prediction of Boreas. This is of
course the serial implementation with the worst case latency
and lowest hardware cost. Parallelizing this would cut the
latency by n while increasing the hardware implementation
cost accordingly (n being the issue width).

VI. CONCLUSIONS

This work demonstrated the use of the HotGauge framework
and the associated Hotspot-Severity metric to analyze the
problem of selecting the VF point for the next time-step.
The Novel machine learning models that were developed as

part of Boreassurpassed the performance of the thermal-only
models, resulting in accurate severity prediction and mitigation
on unseen workloads. These machine learning models were,
therefore, able to select a frequency that was 4.5% better than
thermal only models on average, and up to 9.6% higher in the
best case. This was achieved while having the same reliability
budget as the thermal models.
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